predict_with_quantiles_plot
Description
Plots predictions and 90% CI
Usage
predict_with_quantiles_plot( data, fit, conc_col, dv_col, treatment_predictors, control_predictors = NULL, reference_threshold = c( 10), conf_int = 0.9, nbins = 10, error_bars = "CI", xlabel = "Concentration ( ng/mL)", ylabel = bquote( Delta ~ "QTc ( ms)"), title = "")
Arguments
Name | Description |
---|---|
data | A dataframe of QTc dataset |
fit | a lme model to make predictions with |
conc_col | an unquoted column name of concentration measurements |
dv_col | an unquoted column name of dQTC measurements |
treatment_predictors | list of a values for contrast. CONC will update |
control_predictors | list of b values for contrast |
reference_threshold | optional vector of numbers to add as horizontal dashed lines |
conf_int | confidence interval fraction, default = 0.9 |
nbins | number of bins for quantiles, or vector of cut points for computing average |
error_bars | a string to denote which errorbars to show, CI, SE, SD or none. |
xlabel | a string for xlabel, default “Concentration (ng/mL)“ |
ylabel | a string for ylabel, default bquote(Delta~“QTc (ms)“) |
title | a string for the plot title |
Returns
a plot
Examples
data <- preprocess(data) fit <- fit_prespecified_model( data, deltaQTCF, ID, CONC, deltaQTCFBL, TRTG, TAFD, "REML", TRUE ) predict_with_quantiles_plot( data, fit, CONC, deltaQTCF, treatment_predictors = list( CONC = 0, TRTG = "Verapamil HCL", TAFD = "2 HR", deltaQTCFBL = 0 ) )