predict_with_exposure_plot
Description
Plots model predictions with therapeutic and supra therapeutic Cmax
Usage
predict_with_exposure_plot( data, fit, conc_col, treatment_predictors, control_predictors = NULL, reference_threshold = c( 10), tpx_cmax = NULL, stpx_cmax = NULL, conf_int = 0.9, xlabel = "Concentration ( ng/mL)", ylabel = NULL, title = "")
Arguments
Name | Description |
---|---|
data | a dataframe of QTc dataset |
fit | the lme model to make predictions with |
conc_col | an unquoted column name of drug concentration measurements |
treatment_predictors | list of a values for contrast. CONC will update |
control_predictors | list of b values for contrast |
reference_threshold | optional vector of numbers to add as horizontal dashed lines |
tpx_cmax | Optional - numeric therapeutic dose Cmax |
stpx_cmax | Optional - numeric supra therapeutic Cmax |
conf_int | confidence interval fraction, default = 0.9 |
xlabel | xlabel for plot |
ylabel | ylabel for plot |
title | a string of plot title. |
Returns
a plot
Examples
data <- preprocess(data) fit <- fit_prespecified_model( data, deltaQTCF, ID, CONC, deltaQTCFBL, TRTG, TAFD, "REML", TRUE ) pk_df <- compute_pk_parameters( data %>% dplyr::filter(DOSE != 0), ID, DOSEF, CONC, NTLD)
predict_with_exposure_plot( data, fit, CONC, treatment_predictors = list( CONC = 0, deltaQTCFBL = 0, TRTG = "Verapamil HCL", TAFD = "2 HR" ), control_predictors = list( CONC = 0, deltaQTCFBL = 0, TRTG = "Placebo", TAFD = "2 HR" ), tpx_cmax = pk_df[[1, "Cmax_gm"]], # Dose = 120 )