Skip to content

fit_prespecified_model

Description

generates nlme::lme model either prespecified or without TRT and TIME.

Usage

fit_prespecified_model(
data,
dv_col,
id_col,
conc_col,
delta_bl_col,
trt_col = NULL,
tafd_col = NULL,
method = "ML",
remove_conc_iiv = FALSE
)

Arguments

NameDescription
dataa dataframe of the QTc datset
dv_colan unquoted column name of dependent variable data
id_colan unquoted column name of ID data
conc_colan unquoted column name of CONC data
delta_bl_colan unquoted column name of delta_bl values, e.g. deltaQTCFBL, deltaHRBL
trt_colOptional - an unquoted column name of TRT data
tafd_colOptional - an unquoted column name of TAFD data
methodmethod for nlme::lme fitting
remove_conc_iivboolean for removing IIV on concentration slope parameter

Returns

an nlme::lme model fit to the data

Examples

data <- preprocess(data)
fit_prespecified_model(data, deltaQTCF, ID, CONC, deltaQTCFBL, TRTG, TAFD)

Model Equation

ΔQTcFi,j,k=(θ0+η0,i)+(θ1+η1,i)Ci,j,k+θ2(ΔQTcFi,j,k=0QTcFbaseline)+θ3TRTGj+θ4TAFDk\begin{aligned} \Delta \text{QTcF}_{i,j,k} = & \left( \theta_0 + \eta_{0,i} \right ) + \left( \theta_1 + \eta_{1,i} \right ) C_{i,j,k} + \theta_2 \left( \Delta\text{QTcF}_{i,j,k=0} - \text{QTcF}_{\text{baseline}} \right ) \\ & + \theta_3 \text{TRTG}_j + \theta_4 \text{TAFD}_k \end{aligned}

Reference

Garnett C, Bonate PL, Dang Q, Ferber G, Huang D, Liu J, Mehrotra D, Riley S, Sager P, Tornoe C, Wang Y. Scientific white paper on concentration-QTc modeling. J Pharmacokinet Pharmacodyn. 2018 Jun;45(3):383-397. doi: 10.1007/s10928-017-9558-5. Epub 2017 Dec 5. Erratum in: J Pharmacokinet Pharmacodyn. 2018 Jun;45(3):399. doi: 10.1007/s10928-017-9565-6. PMID: 29209907.